Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Jens Hartung, ${ }^{\text {a }}$ Uwe Bergsträßer, ${ }^{\text {a }}$ Marco Greb, ${ }^{\text {b }}$ Ingrid Svoboda ${ }^{c}$ and Hartmut Fuess ${ }^{\text {c* }}$<br>${ }^{\mathrm{a}}$ Fachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany, ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, and ${ }^{\text {c Strukturforschung, }}$ FB11 Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany<br>Correspondence e-mail:<br>hartung@chemie.uni-kl.de

Key indicators
Single-crystal X-ray study
$T=303 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.015 \AA$
$R$ factor $=0.069$
$w R$ factor $=0.217$
Data-to-parameter ratio $=17.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## cis-5-Bromo-2,2,6-trimethyl-trans-6-phenyl-tetrahydropyran-3-carboxylic acid

Centrosymmetric hydrogen-bonding between carboxy substituents links enantiomers of the title compound, $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrO}_{3}$, into dimers. Close contacts that originate from axially arranged methyl substituents in positions 2 and 6 induce distortions, which are evident from a widening of the endocyclic bond angle at the ring O atom $\left[122.6\right.$ (6) ${ }^{\circ}$ ] and a flattening of the tetrahydropyran chair.

## Comment

cis-5-Bromo-2,2,6-trimethyl-trans-(6-phenyl)tetrahydropyran-3-carboxylic acid, (I), is a valuable starting material for the synthesis of the marine natural product aplysiapyranoid A (Hartung \& Greb, 2003). By mistake, an incorrect diastereomeric ratio of cis:trans $=34: 66$ for the minor cyclization product, i.e. methyl 2,2-dimethyl-5-(1-phenylethenyl)tetra-hydrofuran-3-carboxylate, was given in that report; the correct diastereomeric ratio for the latter product is cis:trans $=66: 34$. The racemate of compound (I) has been crystallized and investigated by X-ray diffraction in order to verify its relative trans configuration at C5 and C6.

(I)

Substituents at $\mathrm{C} 3\left(\mathrm{CO}_{2} \mathrm{H}\right), \mathrm{C} 5(\mathrm{Br})$ and $\mathrm{C} 6\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ are attached in equatorial positions of the tetrahydropyran ring, thus leading to a relative 3,5-cis and 5,6-trans configuration of (I) (Fig. 1). Axially arranged methyl groups at C 2 and C 6 cause steric repulsions, since the $\mathrm{C} 7 \cdots \mathrm{C} 10$ distance [ 3.222 ( 9 ) $\AA$ ] falls below the sum of the van der Waals radii (1.70 A for C; Bondi, 1964). The distortion imposed by these close contacts is evident from a widening of the bond angle at O1 $\left[122.6(6)^{\circ}\right]$ and from the magnitude of the endocyclic torsion angles of the tetrahydropyran subunit (Table 1).
The cyclic ether adopts a ${ }^{4} C_{1}$ conformation, with atoms O1 $[-0.505(10) \AA]$ and $\mathrm{C} 4[0.673(12) \AA]$ offset in opposite directions from the plane of atoms C2/C3/C5/C6. This geometry corresponds to the most significantly populated conformer of (I) in $\mathrm{CDCl}_{3}$ solution ( 298 K ), as established on the basis of $\mathrm{H}, \mathrm{H}$ coupling constants ( ${ }^{1} \mathrm{H}$ NMR).

Short intermolecular distances [O2..O3 ${ }^{i} 2.622(10) \AA$; symmetry code: (i) $1-x,-1-y, 1-z]$ were interpreted as $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 2) which link neighbouring molecules into centrosymmetric dimers (Fig. 2). Although the carboxy H atom was not located in the differ-

Received 21 March 2006
Accepted 6 April 2006


Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the $50 \%$ probability level and H atoms are shown as small spheres.


Figure 2
The hydrogen-bonded (dashed lines) centrosymmetric dimer of (I). O atoms are depicted as red and Br atoms as orange.
ence Fourier map, the NMR spectroscopic data for (I) leave no doubt of atom C 11 being a carboxy C atom.

## Experimental

A solution of methyl 5-bromo-2,2,6-trimethyl-6-phenyltetrahydro-pyran-3-carboxylate (3,5-cis,5,6-trans:3,5-trans,5,6-trans $=80: 20$; Hartung \& Greb, 2003) ( $3.00 \mathrm{~g}, 8.79 \mathrm{mmol}$ ) and $\mathrm{LiOH} x \mathrm{H}_{2} \mathrm{O}(5.94 \mathrm{mg}$, 142 mmol ) in dimethoxyethane ( 120 ml ) and $\mathrm{H}_{2} \mathrm{O}(180 \mathrm{ml})$ was stirred for 2 d at 293 K . Afterwards, the solution was acidified with aqueous $\mathrm{HCl}(\mathrm{pH} 2)$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times$ $80 \mathrm{ml})$. The organic washings were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to furnish 5-bromo-2,2,6-trimethyl-6-phenyltetrahydropyran-3-carboxylic acid, (I), as a brownish solid $(2.67 \mathrm{~g}, 93 \%$; 3,5-cis,5,6-trans:3,5-trans,5,6-trans $=$ 80:20). Colourless prisms, suitable for X-ray diffraction, were grown by slowly concentrating a saturated solution of (I) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether ( $3: 1 \mathrm{v} / \mathrm{v}$ ) (m.p. 421 K ). Elemental analysis calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrO}_{3}$ : C 55.06, H $5.85 \%$; found C 57.52, H $6.54 \%$.

$$
\begin{aligned}
& \text { Crystal data } \\
& \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrO}_{3} \\
& M_{r}=327.21 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=9.955(2) \AA \\
& b=9.875(3) \AA \\
& c=15.896(2) \AA \\
& \beta=103.62(1)^{\circ}{ }^{\circ} \\
& V=1518.7(6) \AA^{3}
\end{aligned}
$$

## Data collection

Enraf-Nonius CAD diffractometer
$\omega / 2 \theta$ scans
Absorption correction: $\psi$ scan (North et al., 1968)
$T_{\text {min }}=0.221, T_{\text {max }}=0.877$
3621 measured reflections
2977 independent reflections
1024 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.252$
$\theta_{\text {max }}=26.0^{\circ}$
3 standard reflections
frequency: 120 min intensity decay: $10.0 \%$

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0855 P)^{2}\right. \\
& \quad+2.55 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.004 \\
& \Delta \rho_{\max }=0.83 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\AA{ }^{\circ}{ }^{\circ}$ ).

| Br1-C5 | $1.965(9)$ | $\mathrm{C} 6-\mathrm{C} 5$ | $1.518(10)$ |
| :--- | :---: | :--- | ---: |
| O1-C6 | $1.444(10)$ | $\mathrm{C} 2-\mathrm{C} 3$ | $1.518(11)$ |
| O1-C2 | $1.455(10)$ | $\mathrm{C} 4-\mathrm{C} 3$ | $1.486(13)$ |
| O3-C11 | $1.214(10)$ | $\mathrm{C} 4-\mathrm{C} 5$ | $1.508(12)$ |
| O2-C11 | $1.320(11)$ |  |  |
|  |  |  | $108.7(7)$ |
| $\mathrm{C} 6-\mathrm{O} 1-\mathrm{C} 2$ | $122.6(6)$ | $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $119.3(9)$ |
| O1-C6-C5 | $106.2(7)$ | $\mathrm{O} 3-\mathrm{C} 11-\mathrm{O} 2$ | $113.7(8)$ |
| O1-C2-C3 | $108.4(7)$ | $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ |  |
|  |  |  | $48.5(10)$ |
| C2-O1-C6-C5 | $50.3(9)$ | $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $58.7(10)$ |
| C6-O1-C2-C3 | $-48.5(10)$ | $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ |  |
| C5-C4-C3-C2 | $-55.7(10)$ | $\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$ | $-53.0(9)$ |

Table 2
Hydrogen-bond geometry ( $\AA{ }^{\circ}{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$ | 0.82 | 1.81 | $2.622(10)$ | 174 |

Symmetry code: (i) $-x+1,-y-1,-z+1$.
All H atoms were positioned geometrically and treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-1.00 \AA$ and with $U_{\text {iso }}(\mathrm{H})$ set at $1.2 U_{\text {eq }}$ (aromatic, $\left.\mathrm{CH}_{2}, \mathrm{CH}\right)$ or $1.5 U_{\mathrm{eq}}\left(\mathrm{CH}_{3}\right.$ and OH$)$ of the parent atom. A free rotating-group refinement was used for the $\mathrm{CH}_{3}$ groups. The high value of $R_{\text {int }}$ probably originates from the large number of weak data, which also might lower the precision of the structure.

Data collection: CAD-4 Diffractometer Control Software (EnrafNonius, 1993); cell refinement: CAD-4 Diffractometer Control Software; data reduction: CAD-4 Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON2002 (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the Deutsche Forschungsgemeinschaft (grant No. Ha1705/8-1).

## organic papers

## References

Bondi, A. (1964). J. Chem. Phys. 68, 441-452
Enraf-Nonius (1993). CAD-4 Diffractometer Control Software. Release 5.10. Enraf-Nonius GmbH, Solingen, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hartung, J. \& Greb, M. (2003). Tetrahedron Lett. 44, 6091-6093
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, $351-$ 359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.


[^0]:    (c) 2006 International Union of Crystallography All rights reserved

