organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jens Hartung,^a Uwe Bergsträßer,^a Marco Greb,^b Ingrid Svoboda^c and Hartmut Fuess^c*

^aFachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany, ^bInstitut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, and ^cStrukturforschung, FB11 Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany

Correspondence e-mail: hartung@chemie.uni-kl.de

Key indicators

Single-crystal X-ray study T = 303 K Mean σ (C–C) = 0.015 Å R factor = 0.069 wR factor = 0.217 Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

cis-5-Bromo-2,2,6-trimethyl-*trans*-6-phenyl-tetrahydropyran-3-carboxylic acid

Centrosymmetric hydrogen-bonding between carboxy substituents links enantiomers of the title compound, $C_{15}H_{19}BrO_3$, into dimers. Close contacts that originate from axially arranged methyl substituents in positions 2 and 6 induce distortions, which are evident from a widening of the endocyclic bond angle at the ring O atom [122.6 (6)°] and a flattening of the tetrahydropyran chair.

Comment

cis-5-Bromo-2,2,6-trimethyl-*trans*-(6-phenyl)tetrahydropyran-3-carboxylic acid, (I), is a valuable starting material for the synthesis of the marine natural product aplysiapyranoid A (Hartung & Greb, 2003). By mistake, an incorrect diastereomeric ratio of *cis:trans* = 34:66 for the minor cyclization product, *i.e.* methyl 2,2-dimethyl-5-(1-phenylethenyl)tetrahydrofuran-3-carboxylate, was given in that report; the correct diastereomeric ratio for the latter product is *cis:trans* = 66:34. The racemate of compound (I) has been crystallized and investigated by X-ray diffraction in order to verify its relative *trans* configuration at C5 and C6.

Substituents at C3 (CO₂H), C5 (Br) and C6 (C₆H₅) are attached in equatorial positions of the tetrahydropyran ring, thus leading to a relative 3,5-*cis* and 5,6-*trans* configuration of (I) (Fig. 1). Axially arranged methyl groups at C2 and C6 cause steric repulsions, since the C7···C10 distance [3.222 (9) Å] falls below the sum of the van der Waals radii (1.70 Å for C; Bondi, 1964). The distortion imposed by these close contacts is evident from a widening of the bond angle at O1 [122.6 (6)°] and from the magnitude of the endocyclic torsion angles of the tetrahydropyran subunit (Table 1).

The cyclic ether adopts a ${}^{4}C_{1}$ conformation, with atoms O1 [-0.505 (10) Å] and C4 [0.673 (12) Å] offset in opposite directions from the plane of atoms C2/C3/C5/C6. This geometry corresponds to the most significantly populated conformer of (I) in CDCl₃ solution (298 K), as established on the basis of H,H coupling constants (¹H NMR).

Short intermolecular distances $[O2\cdots O3^i 2.622 (10) \text{ Å};$ symmetry code: (i) 1 - x, -1 - y, 1 - z] were interpreted as $O-H\cdots O$ hydrogen bonds (Table 2 and Fig. 2) which link neighbouring molecules into centrosymmetric dimers (Fig. 2). Although the carboxy H atom was not located in the differReceived 21 March 2006 Accepted 6 April 2006

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres.

Figure 2

The hydrogen-bonded (dashed lines) centrosymmetric dimer of (I). O atoms are depicted as red and Br atoms as orange.

ence Fourier map, the NMR spectroscopic data for (I) leave no doubt of atom C11 being a carboxy C atom.

Experimental

A solution of methyl 5-bromo-2,2,6-trimethyl-6-phenyltetrahydropyran-3-carboxylate (3,5-cis,5,6-trans:3,5-trans,5,6-trans = 80:20; Hartung & Greb, 2003) (3.00 g, 8.79 mmol) and LiOHxH₂O (5.94 mg, 142 mmol) in dimethoxyethane (120 ml) and H₂O (180 ml) was stirred for 2 d at 293 K. Afterwards, the solution was acidified with aqueous HCl (pH 2). The mixture was extracted with CH_2Cl_2 (4 × 80 ml). The organic washings were combined, dried (MgSO₄) and concentrated under reduced pressure to furnish 5-bromo-2,2,6trimethyl-6-phenyltetrahydropyran-3-carboxylic acid, (I), as a brownish solid (2.67 g, 93%; 3,5-cis,5,6-trans:3,5-trans,5,6-trans = 80:20). Colourless prisms, suitable for X-ray diffraction, were grown by slowly concentrating a saturated solution of (I) in CH₂Cl₂-diethyl ether (3:1 v/v) (m.p. 421 K). Elemental analysis calculated for C15H19BrO3: C 55.06, H 5.85%; found C 57.52, H 6.54%.

Crystal data

C ₁₅ H ₁₉ BrO ₃	
$M_r = 327.21$	
Monoclinic, $P2_1/n$	
a = 9.955 (2) Å	
b = 9.875 (3) Å	
c = 15.896(2) Å	
$\beta = 103.62 \ (1)^{\circ}$	
V = 1518.7 (6) Å ³	

Z = 4 $D_r = 1.431 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 2.71 \text{ mm}^{-1}$ T = 303 (2) K Plate, colourless $0.80 \times 0.32 \times 0.05 \; \text{mm}$

Data collection

Enraf–Nonius CAD-4
diffractometer
$\omega/2\theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.221, \ T_{\max} = 0.877$
3621 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.217$ S = 0.962977 reflections 169 parameters H-atom parameters constrained 2977 independent reflections 1024 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.252$ $\theta_{\rm max} = 26.0^{\circ}$ 3 standard reflections frequency: 120 min intensity decay: 10.0%

$w = 1/[\sigma^2(F_0^2) + (0.0855P)^2]$ +2.55P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.004$ $\Delta \rho_{\rm max} = 0.83 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

Table 1		
Selected geometric parameters	(Å,	°).

Br1-C5	1.965 (9)	C6-C5	1.518 (10)
O1-C6	1.444 (10)	C2-C3	1.518 (11)
O1-C2	1.455 (10)	C4-C3	1.486 (13)
O3-C11	1.214 (10)	C4-C5	1.508 (12)
O2-C11	1.320 (11)		
C6-O1-C2	122.6 (6)	C3-C4-C5	108.7 (7)
O1-C6-C5	106.2 (7)	O3-C11-O2	119.3 (9)
O1-C2-C3	108.4 (7)	C4-C3-C2	113.7 (8)
C2-O1-C6-C5	50.3 (9)	01-C2-C3-C4	48.5 (10)
C6-O1-C2-C3	-48.5(10)	C3-C4-C5-C6	58.7 (10)
C5-C4-C3-C2	-55.7 (10)	O1-C6-C5-C4	-53.0 (9)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O3^i$	0.82	1.81	2.622 (10)	174

Symmetry code: (i) -x + 1, -y - 1, -z + 1.

All H atoms were positioned geometrically and treated as riding atoms, with C-H distances in the range 0.95–1.00 Å and with $U_{iso}(H)$ set at $1.2U_{eq}$ (aromatic, CH₂, CH) or $1.5U_{eq}$ (CH₃ and OH) of the parent atom. A free rotating-group refinement was used for the CH₃ groups. The high value of R_{int} probably originates from the large number of weak data, which also might lower the precision of the structure.

Data collection: CAD-4 Diffractometer Control Software (Enraf-Nonius, 1993); cell refinement: CAD-4 Diffractometer Control Software; data reduction: CAD-4 Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON2002 (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the Deutsche Forschungsgemeinschaft (grant No. Ha1705/8-1).

References

Bondi, A. (1964). J. Chem. Phys. 68, 441–452.
Enraf–Nonius (1993). CAD-4 Diffractometer Control Software. Release 5.10.
Enraf–Nonius GmbH, Solingen, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hartung, J. & Greb, M. (2003). Tetrahedron Lett. 44, 6091-6093.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.